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Role of cloud processes in climate :

- Poorly understood

- Critical for climate modelling
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. ".. the modellin ';_, time dependent clouds is perhaps the weakest
aspect of the existing general circulation models and may be the
most difficult task in constructing any reliable climate model”

--- Arakawa (WMO, 1975)



Outline :

I - Why are cloud-radiative effects so critical for
climate modelling ?

IT - What strategies for the evaluation of
cloud-climate feedbacks in general circulation models ?
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Analysis of the uncertainty in climate sensitivity
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Analysis of the uncertainty in climate sensitivity

AT, = AT, p + 2 AT,

x+*=P
Planck Feedback
response contributions
4.5 1
___|TOTAL B FORCING
4|| NI PLANCK 0.9|| NI PLANCK
WV + LR WV + LR cloud
___ISFCALB 0.8}{ C__ISFC ALB | feedbacks
3.5/| M CLOUDS 2 || cLOUDS e
- S (7
3t Filh
=
. E D-E-
_.25 e
¥ |
— Al E o5l
< 5 £
E 0.4}
1.5} AT
g 0.3
: =
1 0.2
0.5} 0.1t —
0 0

multi-model mean

(Dufresne and Bony, J. Climate, 2008)

inter-model differences
(standard deviation)



"Cloud feedbacks remain the primary source of uncertainty in model based
estimates of climate sensitivity. "
--- IPCC AR4 (2007)



"Cloud feedbacks remain the primary source of uncertainty in model based
estimates of climate sensitivity. "
--- IPCC AR4 (2007)

— Where does this uncertainty come from ?



15 CMIP3/AR4 Coupled Ocean-Atmosphere GCMs
(+1% CO2/year experiments )

Sensitivity of the tropical NET CRF
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What controls the response of tropical clouds
to climate change ?

o mmms

* large-scale dynamics

* surface and a‘rmospher/per‘res
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Sensitivity of the Tropical Cloud Radiative Forcing to Global Warming
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Sensitivity of the Tropical Cloud Radiative Forcing to Global Warming

Analysis method :

e Proxy w for large-scale motions: wsgonpe.

e Decomposition of the tropical circulation

into dynamical regimes: fj;o P,de =1

e Composite of cloud or radiative variables

in each dynamical regime: C|,
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Sensitivity of the Tropical Cloud Radiative Forcing to Global Warming

Analysis method :

e Proxy w for large-scale motions: wsgonpe.

e Decomposition of the tropical circulation

into dynamical regimes: fj;o P,de =1

e Composite of cloud or radiative variables

in each dynamical regime: C|,

e Tropical average: C = fj;o P,C,dv
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Sensitivity of the Tropical Cloud Radiative Forcing to Global Warming
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Mean cloud properties simulated by

low-sensitivity and high sensitivity GCMs
in the current climate (CMIP3 OAGCMs)

* High-sensitivity GCMs (8 OAGCMs)
* Low-sensitivity GCMs (7 OAGCMs)
* Observations
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s - Clouds do not matter only for climate sensitivity |

- PBL clouds are not the only clouds to be
critical for climate modelling !




Cloud-Radiative Effects in the Tropics

Deep convective clouds
have a weak impact on
NET radiation TOA, but ...

cool the surface
(by increasing the albedo)

and 30SL_een 3 Pernad 19
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warm the troposphere 20N

(by reducing the radiative cooling) on’
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(Tian & Ramanathan 2002)
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Impact of the atmospheric cloud radiative forcing on
GCM-simulated tropical circulation
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Cloud-radiative effects strengthen
the Hadley-Walker circulation and

make the ITCZ more narrow



TOGA COARE :

Tropospheric Radiative Heating Rate
(Johnson and Ciesielski, JAS, 2000 ; Ciesielski et al., JAS, 2003)

Budget—derived IFA Net Radiative Heating Rate
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Fluctuations of clouds and OLR

have long been considered as

manifestations of tropical variability,

May cloud-radiation interactions
also play an active role in the
variability of the tropical
atmosphere ?

' /,f«’i:::::::_:_:::::=~=
. N
convection,

dynamics clouds

2

water vapour,

Time

TOGA COARE

1NOV1992

16NOV1992 -
1DEC1992!

16DEC1992 4

1JAN1993 1\ |5
N

16JAN1993 {7\’

1FEB1993

16FEB1993 - ;

OLR Time=Longitude Section

0 80E 120E 180 120W

Longitude



Simple Linear Model of the Equatorial Atmosphere
(Emanuel 1987, Yano & Emanuel 1991, Bony & Emanuel 2005)
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Simple Linear Model of the Equatorial Atmosphere
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Role of moist-radiative feedbacks
in the large-scale organization of the equatorial atmosphere

(1) Cloud-radiative feedbacks affect the growth rate of unstable modes of the
tropical atmosphere; strong feedbacks excite small-scale disturbances
(advected by the mean flow) and thus the relative prominence of small-scale and
planetary-scale modes of organization of the atmosphere.

(2) Cloud-radiative feedbacks reduce the phase speed of large-scale
disturbances, particularly at the planetary scale.
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Slowing down of large-scale tropical disturbances
by cloud radiative feedback :

By reducing the radiative cooling of the troposphere in the rising phase of the oscillations,
cloud-radiation interactions partly oppose the thermodynamical effect of adiabatic motions.
This reduces the effective stratification felt by propagating waves and slows down their

$44 4400041

T

——— 40,000 km T—

Bony & Emanuel, JAS, 2005



Influence of cloud-radiation interaction on simulating
tropical intraseasonal oscillation with a GCM (Lee et al. 2001)
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Numerical simulations using an equatorial (aquaplanet) GCM

2D aquaplanet model (equatorial plane, pon T _OFF b) CRF_FIX

fixed SSTs (300 K), uniform background flow.

Parameterizations :
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Therefore :

Cloud-Radiative effects are critical for many aspects of
climate modelling such as :
- climate sensitivity
- Hadley-Walker circulation
- intraseasonal variability and the large-scale organization
of the atmosphere

— Observations of radiative fluxes and cloud-radiative effects
| at TOA, surface and within the troposphere (over a range of
timescales) strongly needed |

— What strategies for the evaluation of cloud-radiative effects
in climate models ?

...and for the reduction of cloud-climate feedbacks uncertainties ?




Cloud Feedback Model Inter-comparison Project Phase-2
CFMIP-2 (www.cfmip.net)

CFMIP : a project of the WCRP Working Group on Coupled Models (WGCM)
(M. Webb, S. Bony, S. Klein, C. Bretherton, P. Siebesma & 6. Tselioudis)

Objectives :
- Yo facilitate the evaluation of clouds simulated by climate models

- o encourage studies of cloud-climate feedbacks

~\




CMIP5

- A standard set of coordinated model simulations to :
- evaluate how realistic the models are in simulating the recent past
-~ provide projections of future climate change on two time scales

- understand some of the factors responsible for model differences

- Taylor et al. 2009, http://cmip-pcmdi.linl.gov/cmip5/

- Will be assessed by the IPCC AR5
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Cloud Feedback Model Inter-comparison Project Phase-2
CFMIP-2 (www.cfmip.net)

" 6eMm analysis Through\
a hierarchy of models

... to better understand cloud-climate feedbacks
and provide guidance :

e.g.: what observational tests applied to GCMs
might be discriminating regarding climate change
cloud feedbacks ?

— what processes dominate the inter-model spread of
cloud feedbacks ? (OAGCM, AGCM, aquaplanet, 1D)
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CMIP5

- A standard set of model simulations to :

- evaluate how realistic the models are in simulating the recent past
-~ provide projections of future climate change on two time scales

- understand some of the factors responsible for model differences

- Taylor et al. 2009, http://cmip-pcmdi.linl.gov/cmip5/
- Will be assessed by the IPCC AR5
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Cloud Feedback Model Inter-comparison Project Phase-2
CFMIP-2 (www.cfmip.net)

" 6eMm analysis *rhrough\ " Process studies )
a hierarchy of models | |(in-situ obs, LES/CRMs)
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CFMIP/GCSS/CMIPS model outputs at selected locations
(118 locations, high-frequency, detailed cloud diagnostics)
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e ARM, CEOP, CloudNet instrumented sites

e GPCT / Tropical West & South East Pacific / AMMA transects

* Field experiments / GCSS case studies

* Locations of large inter-model spread of cloud feedbacks (CMIP3)
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CFMIP-GCSS Study of Cloud Feedback
Mechanisms
by using SCM/CRM/LES Models (CGILS project)

Case studies of PBL cloud feedback mechanisms
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Cloud Feedback Model Inter-comparison Project Phase-2
CFMIP-2 (www.cfmip.net)

" 6eMm analysis *rhrough\ " Process studies )
a hierarchy of models | |(in-situ obs, LES/CRMs)
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Cloud Feedback Model Inter-comparison Project Phase-2
CFMIP-2 (www.cfmip.net)

" 6eMm analysis Through\
a hierarchy of models

-

Process studies

~
(in-situ obs, LES/CRMs)

/Satellite observations
& simulators (COSP)
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A-Train constellation of satellites

CALIPSO
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CALIPSO-GOCCP lidar observations from space

CALIPSO—GOCCP cloud fraction (Mar—Apr—May)

A 3D view of the

_____________________ ) Earth's cloudiness
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A new view of marine—
boundary-layer clouds

(CALIPSO-60CCP:
Chepfer et al., JGR, 2009) .,



But :

The cloud cover derived from satellites is not directly comparable to model outputs
(vertical overlap, sensitivity of measurements, attenuation...)



But :

The cloud cover derived from satellites 1s not directly comparable to model outputs
(vertical overlap, sensitivity of measurements, attenuation...)

Therefore :

To make models and satellites speak the same language, we use “simulators”
1.e. we diagnose from model outputs the quantities that would be observed by satellites
(e.g. radar reflectivities for CloudSat, lidar backscattered signals for CALIPSO)
if the satellites were flying above an atmosphere similar to that predicted by the model.



But :

The cloud cover derived from satellites is not directly comparable to model outputs
(vertical overlap, sensitivity of measurements, attenuation...)

Therefore :

To make models and satellites speak the same language, we use “simulators”
1.e. we diagnose from model outputs the quantities that would be observed by satellites
(e.g. radar reflectivities for CloudSat, lidar backscattered signals for CALIPSO)
if the satellites were flying above an atmosphere similar to that predicted by the model.

ISCCP (International Satellite Cloud Climatology Project) :
- data widely and regularly used for the evaluation of GCMs since the distribution
of the ISCCP simulator (almost 15 years after the start of the program)



But :

The cloud cover derived from satellites is not directly comparable to model outputs
(vertical overlap, sensitivity of measurements, attenuation...)

Therefore :

To make models and satellites speak the same language, we use “simulators”
1.e. we diagnose from model outputs the quantities that would be observed by satellites
(e.g. radar reflectivities for CloudSat, lidar backscattered signals for CALIPSO)
if the satellites were flying above an atmosphere similar to that predicted by the model.

ISCCP (International Satellite Cloud Climatology Project) :
- data widely and regularly used for the evaluation of GCMs since the distribution
of the ISCCP simulator (almost 15 years after the start of the program)

A-Train observations :
CFMIP has developed COSP (CFMIP Observations Simulator Package),
- a community software aiming at facilitating the comparison of GCM outputs with

several observational datasets (ISCCP, CloudSat, CALIPSO, Parasol, etc).
- distributed freely to climate & NWP modeling groups (20+ currently)

- CFMIP also distributes observational diagnostics consistent with simulator diagnostics



To facilitate model-data comparisons :
(ISCCP, CALIPSO, CloudSat, Parasol, etc)

Institut
Pierre

Simon
Laplace

CFMIP Observations (=1

Fage 1 sur?
Observations for COSP, the CFMIP Observations Simulator Package | ..

CALIPEO-GOCCP

CERES Data

’ ; S . CLOUDSAT Data
The Cloud Feedback Mode! Intercomparison Program has designed a protocol to evaluate clouds in climate and weather prediction models

based on satellite observations (http:/efmip.metofiice.com/CFMIF2_experiments_March20th2009.pdf) ISCCF Data
MISR Data
PARASOL Data

A-train : Climate Models
CALIPSO/ CLOUDSAT / CERES / PARASOL e =

+ISCCP + MISR

http://www.cfmip.net
http://climserv.ipsl.polytechnique.fr/cfmip-obs.html



GdIWD Ul dIW4D

CMIP5

- A standard set of model simulations to :

- evaluate how realistic the models are in simulating the recent past
-~ provide projections of future climate change on two time scales

- understand some of the factors responsible for model differences

- Taylor et al. 2009, http://cmip-pcmdi.linl.gov/cmip5/

- Will be assessed by the IPCC AR5
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(Very) Preliminary comparisons of COSP outputs with observations

Caution :

- results obtained shortly after the implementation of the
simulator in several models

- one year of model outputs only
- not definitive results (CMIP5 results not yet available)

- just a few outputs (much more to come)
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CALIPSO-GOCCP

Calipso-like
low-level cloud fraction

strong underestimate
over ocean, especially
in the trades
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Comparison of GCM and CERES CRF :
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Comparison of GCM and CALIPSO-GOCCP layered cloud fractions :
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CONCLUSION

- Many important aspects of the simulated climate depends on the representation
of cloud-radiative effects and cloud-climate feedbacks.

- With the arrival of A-Train observations in complement of Earth's radiation budget
observations, we are entering a new era for the evaluation of clouds in climate models;

- For the first time, a thorough evaluation of clouds and cloud-radiation
interactions in GCMs will be possible in CMIPS + dedicated experiments to better
understand cloud-climate feedbacks and better interpret inter-model differences

- (Very) preliminary results suggest very strong errors in the representation
of low-level cloud properties in several models.

- The impact that these biases may have on cloud-climate feedbacks will be
explored over the next few years.

A suivre ...




Thank you for your attention
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